
Institute for Scientific Computing Research

Student Internship
Research Summaries

125

Institute for Scientific Computing Research

Student Internship Research Summaries

Summary

The need has arisen for creating a sequential implementation of the Message
Passing Interface (MPI) that conforms to the high-performance parallel version.
Named siMPI, this project enables laboratory users to run MPI programs out-

side the POE environment of the IBM ASCI machines for debugging and testing pur-
poses. This is convenient for developers and avoids allocation and waste of high-end
resources. In addition, from a general perspective, siMPI is a tool that lets developers
create parallel programs without the need for actual parallel machines. A single proces-
sor suffices, without the overhead resource allocation, trouble, and complexities.

To implement siMPI, the standard C programming language was chosen. The essential
calls of MPI (the most common two-thirds of the entire 209 function-interface), such
as MPI_Send, MPI_Receive, have been implemented so far. The Fortran equivalents
have also been generated.

The behavior and output of the library calls comprising siMPI have been patterned, but
not exactly mirrored, after the standard MPICH implementation.

The future for siMPI is promising. Once it is deemed stable and fit, siMPI will be pack-
aged with the standard pyMPI so users may freely explore and use MPI with conven-
ience.

The remaining one-third of the standard MPI calls should not be difficult to complete.
Also, as with any software project, siMPI should undergo rigorous testing before
release.

siMPI: Serial
Implementation of
MPI
Maria Luisa M. Alano
University of San Francisco

126 Student Internship Research Summaries

Summary

Geometric multigrid is a fast and cheap alternative to Krylov iterative methods
for some structured problems, but it is not always clear how well it will per-
form on a given problem. Surprisingly slow convergence rates sometimes

plague a given problem. Multigrid performance on linear systems arising from systems
of partial differential equations (PDEs) is understood theoretically for many special
problems. This research aims to generalize the systems of PDEs whose multigrid con-
vergence can be understood theoretically.

Local Fourier Mode Analysis (LMA) is a powerful technique that is applied to estimate
smoothing and convergence rates of multigrid smoothers and methods. In addition, it
is possible to use this technique to determine the spectrum of a preconditioned matrix.
This is useful to estimate the effectiveness of using multigrid as a preconditioner on a
particular problem. Therefore, LMA was selected as the method to use for gathering
data. Unfortunately, very few software packages exist that perform LMA, and doing the
analyses by hand is not an option. Therefore, a new software package was written to
carry out LMA calculations. Using a library provided by Hiptmair and Metzger we
authored an application that calculates smoothing and convergence rates. It also calcu-
lates the spectrum of a matrix preconditioned by multigrid. Other tools were added
that make using the software more intuitive, such as a function that builds the stencil
input files, and a graphical user interface.

This software is now being used within CASC to study different systems of PDEs amid
how multigrid performs when trying to solve or precondition them. I hope to apply
some of this work to a Masters thesis. I intend to expand the current software to offer
more functionality, and, in any case, I plan to continue my collaboration with CASC
on the research that has been started. Currently, we are working on a journal article
that includes some of this work.

Multigrid
Performance on
Systems of PDEs
Using Computational
Local Fourier Node
Analysis
David Alber
University of Illinois at
Urbana-Champaign

127

Institute for Scientific Computing Research

Student Internship Research Summaries

Summary

The DataFoundry bioinformatics application was designed to allow scientists to
interact directly with large datasets, gathered from multiple remote data
sources through a interactive graphical interface. This type of application is

becoming essential, as there are more than five hundred sources of publicly available
bioinformatics information available today. The need to access even a small fraction of
the publicly available, heterogeneous bioinformatics sources on the World Wide Web
motivates the development of a data access solution that facilitates use of external data.

Gathering information from multiple data sources, integrating that data, and providing
an interface to the accumulated data is non-trivial. Advanced computer science tech-
niques are required to develop a solution. One possible solution, which was applied to
this problem, involves the use of wrappers. Wrappers are specialized information access
programs that are able to transmute that information to a form usable by a single appli-
cation. Wrappers were deemed the most appropriate way to extend the DataFoundry
bioinformatics application to support data integration from multiple sources. By adding
wrapper support into the DataFoundry application, we expect that this system will pro-
vide a single access point to bioinformatics data for scientists.

To date, we have been successful in defining and implementing a communication path
between the client and server DataFoundry bioinformatics application programs that
includes support for wrapper-based queries. Adding more external bioinformatics
sources to the DataFoundry application is now as simple as developing a wrapper for a
particular data source.

There are still limitations within the current framework. The most important is that
there are currently relatively few wrappers available for bioinformatics data sources.
Work continues to develop an automated wrapper generation system able to generate
wrappers for any bioinformatics source. The second is performance; with relatively few
wrappers, the client and server are able to process the volume of applicable data with
ease. Once all of the relevant sources are wrapped, however, performance issues will
become pressing.

Wrapper Integration
within the
DataFoundry
Bioinformatics
Application
John C. Anderson
University of the Pacific

128 Student Internship Research Summaries

Summary

One way to evaluate the accuracy of a climate model is to test it against
known benchmarks, such as predictions of the amount and flux of dissolved
inorganic carbon in the oceans. Calculating the column inventory, the

amount of a substance present in the ocean under a certain surface area, is such a test.

Climate model data sets are sufficiently large (often over a hundred thousand points)
that speed can be a factor in calculations. This makes the choice of programming lan-
guage important, to minimize execution time. However, the functionals we are creat-
ing are tools for climate scientists, not computer scientists, so the simplicity of the
interface to the methods is also a consideration. Therefore, several programming lan-
guages - Python, Fortran, and C - are tested to determine the best one in terms of exe-
cution speed and ease of implementation.

We first wrote a Python program that read a data file and extracted the necessary vari-
ables. This separates the interface from the calculation and provides each of the three
implementations with a common standard to follow. We next created a separate set of
Python calls to calculate the column inventory and mean. Finally, we translated the
code from Python into C, and then from C into Fortran. (To communicate with the
Python code, the Fortran module had to be compiled by a tool named Pyfort, a
Python-Fortran connector developed by Paul Dubois at LLNL.)

Three working implementations of the column inventory algorithm - in Python,
Fortran, and C - were completed. The Python version is most likely to be used by the
climate research group at LLNL because most of its members understand Python, so it
will be easy to deal with the source code. However, preparing the Fortran was also
useful because it taught us the basics in making Python and Fortran communicate.
Many of the group's programming routines are already written in Fortran, so the ability
to call them from a Python interface is valuable. Speed of execution is not a major fac-
tor with current dataset sizes, even though Python generally runs about four times
slower than either C or Fortran.

Additional features added to the basic algorithm include correcting volumes of partial
bottom cells and applying regional (basin) masks to the data.

The climate group may now compare the output of the column analysis code to ship-
track data to determine how well their models match the real world. Also, the versions
will be archived for future reference for how to code Python-C and Python-Fortran
programs.

We brought our summer research through the lab “review and release” process with a
poster presentation at the 2002 student research symposium.

Implementing the
Column Inventory
Algorithm
Cheryl Barkauskas
University of Wisconsin-Madison

129

Institute for Scientific Computing Research

Student Internship Research Summaries

Summary

Computer Security has become an increasing concern in today’s networked soci-
ety. The College Cyber Defenders (CCD) program creates a pool of young
computer scientists knowledgeable about computer security. Our project was

to enhance the Network Intrusion Detector (NID) by adding signatures to its database
and updating the web-based Intrusion Detection Exchange Server (IDES). We also
worked on finding a reasonable network setup for future CCD programs to use.

First, we created an internal network on which to run attacks, one that was not con-
nected to the lab network. We also modified the Flexnet server developed at Sandia
Lab to be a backup server through the Network File System. This system allowed us to
recover damaged systems to a known state.

Next, we downloaded exploit code from the internet, wrote it to CDs to bring into our
internal network, and attempted to run the exploits against our victim machines. We
listened to the traffic with Ethereal, a graphical utility similar to tcpdump. From this
traffic, we found packets which contained unique strings to identify the attempted
exploits; these strings became new NID signatures. Most of the exploits we down-
loaded actually did not work, and we were able to obtain only 23 new signatures by
this method. We then turned to an open-source intrusion detector, Snort, and wrote a
PERL program to convert Snort’s “rules” to NID signatures. Through this program, we
obtained over 800 more signatures.

Our final task was to modify IDES to run with the Apache webserver. IDES provides a
way for NID users to interact with developers and suggest improvements to the sys-
tem, and offers utilities to create configuration files for NID and add signatures to the
database. IDES was designed to run with Microsoft’s IIS webserver, using Microsoft
Access as its database and ASP (Active Server Pages) as its script language. To make
IDES less platform-dependent, we modified it to run with the Apache webserver, using
MySQL as its database and PHP as its script language. We also modified the PERL
program to place the new signatures directly into IDES’s database.

Future CCD programs’ network setup would be enhanced by the use of a one-way file
transfer system, which would help avoid the necessity of using CDs to transfer data.
Enhancements to Flexnet to turn it into an easy-to-use backup server would also be
beneficial. IDES would be improved by adding functionality to assist more of NID’s
multiple features.

Improving the
Network Intrusion
Detector
Bridget Benson
Cal Poly San Luis Obispo

Jessica Fisher
Harvey Mudd College

Ian Webb
Colorado State University

130 Student Internship Research Summaries

Summary

We implemented five improvements in the Livermore workhorse code
ALE3D.

ALE3D employs a point-sampling algorithm to determine volume fractions in elements
composed of mixed materials. We devised and implemented an algorithm that effi-
ciently calculates these volume fractions explicitly, and in comparable run-time. This
will result in better simulation accuracy, especially for input with multiple materials
that mix.

ALE3D was not capable of material burn across slide surfaces (partially disconnected
regions of the mesh). I altered ALE3D’s burn routines to detect slides, and burn across,
assuming a burn material exists on the other side, and to do so in such a way so as to
correct for disparate mesh zoning across the slide.

We introduced Python hooks into ALE3D. The code is now capable of reading in
Python source code as input to modify internal data structures at run-time. This allows
users, for example, to create boundary conditions using arbitrary functions at arbitrary
time steps.

We expanded ALE3D's internal mesh generation capabilities. ALE3D previously relied
on externally generated meshes, but can now create simple meshes based on geome-
tries like spheres, cones, blocks, etc. This makes generation of test problems consider-
ably less time-consuming, both in terms of problem generation time and overhead
associated with learning how to generate a mesh.

We modified ALE3D's input code to allow it to read in large data files in parallel.
Mesh input is read and sent only to nodes that need it, based on an a priori domain
decomposition of the problem.

These changes to ALE3D range in type from improved accuracy, greater functionality,
greater ease of use, and improved performance.

Improvements to
ALE3D
Timothy Campbell
University of Arizona

131

Institute for Scientific Computing Research

Student Internship Research Summaries

Summary

Helios is a memory-allocation software tool that provides a flexible and effi-
cient way of debugging large C++ programs and Python extensions in a
developer-friendly, user-steerable way. It is intended to be used in debug

mode, as well as production code. Helios allows dynamic (run-time) control of opti-
mization and debug options. If necessary, these options may be fixed at compile time
for maximum optimization (each option fixed is one less memory access and/or condi-
tional branch at runtime).

Helios contains a “Controller” (C++) that delegates allocation and deallocation to the
appropriate “Allocator”. The various “new” and “delete” operators (C++) and malloc()
and free() (C) call the Controller’s allocate() and deallocate() functions. The Controller
can be manipulated directly in C++ or through Python (with Pyffle wrappers). The
first time we ran Kull with Helios, Helios immediately caught a certain kind of memo-
ry bug (malloc/delete mismatch).

Kull, the project Helios was created to support, and other lab projects are planning on
using Helios, and we will personally continue to maintain it. The code for Helios will
be put up for software Review and Release.

Helios: Illuminating
C++ Memory
Management
Karl Chen
UC Berkeley

132 Student Internship Research Summaries

Summary

Draco is a PMesh physics model program used to create meshes. Draco inte-
grates an OpenGL graphical interface to display the mesh, as well as a com-
mand line interpreter used to manipulate the Python objects that control the

mesh. The Draco help system provides the user with a localized place for finding doc-
umentation on all of the Python objects available. The documentation will inform the
user of all the methods, functions, classes, and data that a particular object has, and it is
organized in an easy to read website format.

PyDoc is a documentation tool for the Python scripting language, it will get the infor-
mation about any Python objects and output it into a text format. Unfortunately,
PyDoc does not have the ability to create the beautiful html format that we wanted.
However, the C++ and C documentation tool Doxygen does have the ability to create
html as well as many other desirable formats of output. So we created a bridge
between the two. The bridge uses PyDoc to get the information from the Python
objects in Draco, then it formats that information to create files that Doxygen can
understand. After this, Doxygen can be used to create the html pages.

As another part of the project, we made viewing help pages easy to do while using
Draco. Since the pages are in html, a browser is the best way to display them. We
allowed for two options. The first option is an integrated browser written with the QT
windowing library; the second option is to use a browser integrated into the operating
system environment. The integrated browser is very simple and does not allow for
things like style sheets, or backgrounds with differentiated highlight colors. The sys-
tem browser can be anything like Netscape, Mozilla, or Konqueror, and is determined
by setting the environment variable DRACOBROWSER to the browser of choice.
Either of these browsers may be launched, while running Draco, from the command
line interpreter or from the Help pull-down menu in the Draco GUI.

The help system will be maintained and augmented by my supervisor who did the ini-
tial work on the bridge between PyDoc and Doxygen.

Draco Help System
John Clark
Northern Arizona University

133

Institute for Scientific Computing Research

Student Internship Research Summaries

Summary

Scalar fields are used to represent data in different application areas like geo-
graphic information systems, medical imaging or scientific visualization. One
fundamental visualization technique for scalar fields is the display of isocontours

- that is, sets of points of equal scalar value, also called the isovalue. For example in ter-
rain models isolines are used to highlight regions of equal elevation. The Contour Tree
is a graph that represents the relations between the connected components of the iso-
contours in a scalar field. Two connected components that merge together (as one con-
tinuously varies the isovalue) are represented as two arcs that join in a node of the
graph. Each node occurs at a critical point in the scalar field. For a simplicial domain
with a piece-wise linear interpolant, Carr et al. present a simple algorithm for comput-
ing the Contour Tree with complexity 0(n log n + N), where n is the number of points
in the domain, and N is the number of simplices.

One fundamental limitation of the Contour Tree is the lack of additional information
regarding the topology of the contours. The topology of an isocontour is fully character-
ized by its Betti numbers. In 3D fields the isocontours are surfaces and the Betti numbers
correspond to the number of connected compo-nents, the number of tunnels, and the
number of voids enclosed by a surface. Pascucci has presented a simple and fast algorithm
for the construction of the Contour Tree of a 3D scalar field augmented with the Betti
numbers of each contour. The complexity of this approach is 0(N log N) in time and 0(N)
in storage. The nodes of the Augmented Contour Tree correspond precisely to every criti-
cal point of the field. Thus we trade a slightly slower algorithm for more information.

We have implemented both of the above algorithms and produced images of complex
contour trees for a few data-sets. The images are produced with the graphiz utility
from AT&T. Our data-sets are quickly approaching the limit of this utility’s ability.
Therefore in the future we will need to develop our own tool for drawing the Contour
Tree. We have designed a third algorithm that computes the Augmented Contour Tree
in 0(n log n ± N) time. This new algorithm combines the efficiency and simplicity of
the scheme of Carr with the augmented information of Pascucci. Thus we have suc-
cessfully introduced new and useful information to the Contour Tree data structure
without slowing down the computation.

Our main result is a completely new approach for computing the Contour Tree for rec-
tilinear grids. This scheme is based on a divide-and-conquer approach, and assumes
only that we can construct the tree for a single cube. In this method we are not limited
to using piecewise linear interpolation, which can introduce false topology on rectilin-
ear grids. In the time I have spent here I have implemented all of these algorithms, and
have collected several practical results. The time complexity of our scheme is further

Computations in
Scalar Field Topology
Kree Cole-McLaughlin
University of Utah

134 Student Internship Research Summaries

Kree Cole-McLaughlin
University of Utah

Summary (continued)

improved to 0(n + t log n) where t is the number of critical points of the mesh. We
have applied this technique to the methane data set of F. Gigi.

We have several goals for future development of this project. The method of producing
the Contour Tree of a cube with a trilinear interpolant involved a careful study of the
topology of the trilinear function. For example, we discovered a case missed by earlier
papers classifying the possible configurations of the trilinear interpolant. We plan to
publish our new result with a formal proof of the completeness of our analysis.

In the possible extension of this project we plan to study the practical scal-ability of
the algorithm for very large data-sets. We also plan to implement a parallel version of
our new algorithm and develop a new GUI component for the effective display of the
Contour Tree.

135

Institute for Scientific Computing Research

Student Internship Research Summaries

Summary

The dominant radiation transport model used for modeling Inertial Confinement
Fusion (ICF) is Implicit Monte Carlo (IMC). Although there exists an accelera-
tion scheme that provides a factor of five increase in performance, its use is

restricted to well defined problems. In this project, we are reducing the bias present in
the acceleration scheme so that there are no limitations on its use.

The overall project comprises two methodologies: Compressed Walk (a non-recursive
solution to the random walk of a constant speed particle) and adjusting diffusion solu-
tions. Our effort was to find the thickness dependent late time outgoing distribution to
be used in concert with the diffusion methodology.

We chose a thickness for the media and placed an isotropic point source in the center.
Subsequently, using Monte Carlo, we followed photons as they incurred isotropic scat-
ters. As the photons left the surface of the media, tallies were made. These numerical
experiments recovered not only the distribution and its error, but also several velocity
moments. The distribution was then fitted to a polynomial of the given form and test-
ed against measured moments.

We were able to capture the distribution and moments in less than thirty coefficients.
Such a short polynomial makes our scheme practical for use in reducing bias, without
incurring a significant runtime penalty.

The angular distribution can be broken down into four regions: early time internal and
outgoing, and late time internal and outgoing. We have presented the late time outgo-
ing. A preliminary investigation into the data suggests that the early time outgoing and
the late time internal are tractable. Although we can measure the early time internal
behavior, the complexity of the distribution makes it difficult to gain runtime advan-
tage over the Compressed Walk solution. Hence, work will continue on the time
dependent outgoing and late time internal distributions as well as the Compressed
Walk solution.

Late Time Outgoing
Distribution from
Spheres
Hillary E. Davis
Georgia Institute of Technology

136 Student Internship Research Summaries

Summary

Computing numerical solutions to finite element problems in parallel can often
be difficult task. Our goal was to create tools with which users can simplify
the process, from creating a mesh all the way to solving the finite element

matrices in parallel.

The natural first step in finite element problems is to define a mesh. For our code,
Netgen was used to create triangular or tetrahedral meshes. After a mesh is estab-
lished, we use the Metis mesh partitioner to split the mesh into multiple subdomains,
one per processor. The mesh information, as well as the connectivity between subdo-
mains, is written to a different file for each subdomain.

Each processor reads in the mesh information corresponding to its subdomain, and the
finite element matrix is created according to its degrees of freedom on the local subdo-
main. Next, a matrix corresponding to the local-to-global degree of freedom table is
created on each processor. This matrix, which we will call P, as well as the finite ele-
ment matrix, A, are stored in ParCSR format. The ParCSR format was chosen due to
the efficiency which it stores sparse matrices in parallel, and its compatibility with the
well established hypre routines. To obtain the full finite element matrix, across subdo-
mains, we take P^T A P. We then apply one of many possible linear solver routines
from the Hypre toolkit to generate the solution on each processor.

Results were satisfactory, with some routines scaling at near perfect levels. If input time
is included, the total time to input and solve the system was actually greater than two
times faster on double the number or processors in some cases. This is an I/O artifact:
the input files are smaller if we split a domain into more subdomains, lowering the
input time on each processor.

Future development of this code may involve improving compatibility with different
mesh generators, including generators that use non-triangular or non-tetrahedral ele-
ments. Other generalizations include implementing other parallel matrix storage for-
mats and investigating their benefits.

Tools for Parallel
Finite Element
Analysis
Paul Dostert
UC Davis

137

Institute for Scientific Computing Research

Student Internship Research Summaries

Summary

Cyclops is a program written in Java that allows users to utilize a graphical user
interface to create or make changes to legacy physics codes. A second pro-
gram, written in Python, converts a language-specific parameter description

file into a data structure that will automatically and dynamically build another data
structure that represents an input deck. Upon parsing the input deck, each value and
comment is added to a Document Object Model (DOM) tree, which is then output in
XML and passed to Cyclops for the user to interface.

This input translator is a far more condensed and efficient than the existing language
parser, written in Perl, that was being used. The concept of recycling the parameter
description file in order to create a look-up hash automated this portion of the process.
(This was the idea of Thomas Richmond, a returning summer student.) In addition to
this, the recently released DOM tree structure enables programmers to convert DOM
trees to XML by merely calling a function. Overall, the decision to incorporate these
fairly young languages with easy to manipulate data structures has condensed thou-
sands of lines of Perl code into hundreds of lines of Python.

Efficient Translators
for Document Object
Model Trees
Roger Elion
Purdue University

138 Student Internship Research Summaries

Summary

This report presents a performance analysis and describes several techniques to
obtain more performance from the secure networking tool SSH, including
implementing a high performance protocol, using multiple processors to per-

form encryption, and making use of multiple sessions. A solution, using multiple SSH
sessions to multiplex data transfer over the network has been developed in an effort to
gain faster transmission speed over the network, while still using strong encryption
ciphers.

SSH is a protocol for secure remote login and other secure network services over an
insecure network. SSH has become the de facto standard for obtaining a remote shell
or transmitting data across the network securely in a day in which security is an
increasing concern. However, we would also like to accomplish this very quickly.

Most of the processing time spent within SSH is in the actual encryption of the pack-
ets, and not in the transfer of the packets across the network. It, of course, takes time
to send the packets over the network, but that time pales in comparison to the time
spent in the encryption algorithms. Since SSH (at least in the case of OpenSSH) is not
multithreaded, CPU cycles are often dormant on multiprocessor machines that could
be used to perform encryption/decryption on the outgoing/incoming packets.

All testing and benchmarks were performed in a non-routable subnet containing two
host machines with a round trip time (RTT) of 116 usec, each running Redhat Linux
7.3. Neither host was mounting NFS or AFS, in order to minimize the network traffic
over the line. A set of benchmarks was performed on the systems and the network to
discover performance and scaling metrics. Netperf was used to measure the maximum
achievable throughput of the network

The Secure Shell used in the testing was from OpenSSH. At the time of testing, the
most recent version of OpenSSH was 3.2.3pl. OpenSSH can be obtained at
www.openssh.org. Only the SSH2 protocol was used and the SSL library used for
encryption was provided by OpenSSL’s distribution of SSL. At the time of testing, the
most recent version of OpenSSL was 0.9.6d. OpenSSL can be obtained at
www.openssl.org. Public/Private key authentication was used since SSH was compiled
and run within user space, instead of running as the system. Although not recommend-
ed, a null key phrase was used on the keys so it would not be required to enter a pass-
word. This made the testing of SSH more feasible.

Netperf is a benchmark utility that can measure end-to-end network latency and
throughput. The latest version at the time of benchmarking was 2.lpl3. Netperf can be
found at www.netperf.org. The results from these two test show that the maximum
available throughput of the 100Mb Ethernet line is approximately 94Mb/sec with 99%

Increasing the
Transfer Speed of
SSH to Utilize Full
Network Bandwidth
Jason R. Estrada
Baylor University

139

Institute for Scientific Computing Research

Student Internship Research Summaries

Summary (continued)

confidence. No TCP optimizations were applied to the network, such as TCP tuning,
since no root access to the machines was available.

Testing the transfer speed of SSH was achieved by using two shell scripts, ssh2_test. sh
and full_ssh2_test. sh. The shell script full ssh2_test. sh was used to test all the sup-
ported SSH2 ciphers. The shell script logged the results to individual log files for later
examination. Minor additions to the SSH source code were made to time and calculate
the effective transfer rate of data across the network without using an external pro-
gram. The shell script assumes that it is executing the modified binary of SSH; other-
wise no output will be displayed in the log files.

Jason R. Estrada
Baylor University

140 Student Internship Research Summaries

Summary

The finite element method approximates solutions to partial differential equa-
tions on arbitrary domains tesselated with a mesh. The bulk of the CPU time
involved in computing this approximation comes from repeatedly solving a lin-

ear system, Ax=b, composed of a mass matrix A, a vector of the degrees of freedom x,
and a right-hand side b. The mass matrix, which is dependent on the geometry of the
mesh and the order of the approximation, tends to be sparse, but can be quite compli-
cated for unstructured meshes. Furthermore, in problems where the mesh is allowed to
deform, the mass matrix changes at each time step to accommodate the deformation.

Since mass matrix solutions dominate the execution time, their CPU requirements
make a natural target for amelioration in finite element problems. Even relatively small
improvements in these solves prove valuable since they appear in each time step.

Our project focused on approximations to the mass matrix equations for an optical
fiber waveguide problem. By comparing the results to an analytical solution to the
optical waveguide problem, error values were obtained for the various approximations.
We studied both this discretization convergence behavior and algebraic convergence
behavior for the iterative solution of the resulting system.

Specifically we studied the preconditioned conjugate gradient with block Jacobi, band-
ed, and ILU preconditioners, with variations in block size, band radius, and fill levels.
We also studied a well-known approximation to the mass matrix known as mass lump-
ing.

Through this work we gained a valuable understanding of the error levels involved in
this class of approximations. We also found that the convergence behavior of the
methods is sufficiently well behaved to consider loosening up the convergence toler-
ances in order to save CPU time. Finally, we found that by adjusting the block size/fill
levels in the block Jacobi/ILU preconditioners we could save a moderate amount of
CPU time.

Despite some modest successes, this remains a work in progress. Future plans include
propagation of linear system error into the overall simulation in order to determine
how much is tolerable, and experimenting with more esoteric solution methods.

Efficient
Approximation of
Solutions to Mass
Matrix Equations
Aaron Fisher
UC Davis

141

Institute for Scientific Computing Research

Student Internship Research Summaries

Summary

Scientific simulations generate huge data sets, which need to be transmitted and
stored for future analysis. To reduce size and transmission time of the generated
files, compression schemes are employed. Current methods are often based on

wavelets defined on grids. These methods perform well on smooth data but loose effi-
ciency near discontinuities. It is known that meshes that adapt size and shape to the data
have better approximation properties than regular grids. Unfortunately the storage over-
head for arbitrary meshes is high compared to regular grids. It is our goal to create a pro-
gressive, triangle based compression method for 2d slices of data. Progressivity permits
browsing of data sets at coarse resolution without need of transmitting the whole file.

It was our goal to avoid the overhead associated with the transmission of connectivity
information. For this reason in our model the receiver makes data dependent decisions
(based on the already received data points) on the construction of the mesh. The
sender monitors these decisions by running the same construction.

At each iteration of the algorithm
- the receiver selects the triangle with the expected highest error
- a point inside this triangle is chosen, such that the insertion is expected to provide

the largest error reduction
- the difference to the prediction of the z-coordinate of this point is transmitted from

the receiver
- the selected triangle is split using the new point
- based on this new knowledge the receiver re-triangulates the mesh to obtain a good

approximation for the next step

We examined different strategies for each of the steps in this algorithm and compared
them using rate distortion curves. Most of these strategies require the construction of a
local quadratic model of the surface based on discrete curvatures. Point insertion based
on a modified farthest point strategy combined with edge flipping based on bending
energy where shown to be efficient for many smooth input data sets. With the new
algorithm approximation errors of 35% to 50% of the magnitude of grid based errors
where achieved when using the same number of data points.

To get a practical method the residuals of the transmitted data points need to be com-
pressed. We are considering different bit-encoding schemes.

The current algorithm can be classified as a lossy method, because it assumes continu-
ous data. In many applications the data is defined on a grid. By choosing the inserted
points from this grid the algorithm will operate in a lossless mode.

In our implementation only residuals are transmitted. We plan to examine heuristics for
the sender to guide the decisions made by the receiver.

Compression of
Scalar Functions
Ilja Friedel
Caltech

142 Student Internship Research Summaries

Summary

Alarge volume of research in distributed computing suggests that load balancing
is a primary concern, and it will inevitably become more difficult as applica-
tions get larger and more complex. The goal of our work is to allow automated

load balancing at the application level. Target applications are typically implemented
in MPI. MPI has been described as the assembly language of parallel programming.
Like assembly language, it is both efficient and difficult to manage. For years people
wrote in assembly for its efficiency, but eventually it was superseded by high-level lan-
guages through the advent of optimizing compilers. MPI is currently the standard for
high performance scientific applications, but as problems increase in complexity and
size, some difficulties will become more evident and it will benefit developers to look
at handling these difficulties with higher-level parallel programming models.

Most previous load balancing research falls into three categories: scheduling between
independent jobs, workload characterization, and balancing the load within an applica-
tion, something that is usually handled by the application programmer. Only relatively
recently has automated load balancing been proposed for balancing load within the
application, and not just between independent applications. The two most notable
examples of this are Charm++ and Cilk, both of which use a programming model in
which work is divided into discrete chunks where the number of chunks is much
greater than the number of processors. These chunks can then be moved around based
on their estimated computational and communication costs.

In these systems, computation and communication costs are estimated heuristically and
no attempt is made to characterize the workload distribution of real scientific applica-
tions. Our work fills this gap. Using a new tool, the Sequoia Tracer, we gathered traces
of four applications: sPPM, SWEEP3D, High Performance LINPACK, and FLASH.
These are each representative of programs run on the ASCI clusters and are common in
scientific computing. In particular, FLASH uses adaptive mesh refinement, a technique
that is growing in popularity and which requires a great deal of internal load balancing.

The traces contain each entry and exit from a computational state as well as communi-
cation. A trace is generated for each processor used by the application in question.
Because tracing can itself affect timing information, it makes sense to use alternative
metrics to measure the amount of work each processor is doing. In this case, a count of
floating point operations is used. From this information, we were able to get the distri-
bution of work done by each processor between communications. Each instance is
analogous to a chunk of work in a programming model such as Charm++, so the distri-
bution can serve as a way to estimate computational costs that were only estimated
with heuristics in the past.

Exploiting Workload
Distributions for
Application-Level
Dynamic Load
Balancing
Karen Glocer
UC Santa Cruz

143

Institute for Scientific Computing Research

Student Internship Research Summaries

Summary (continued)

The results are surprising. The workload distributions for these chunks appear to be
strongly bimodal. Most of the chunks perform very little computation, a few are very
long, but chunks in between are infrequent. The small computational loads seem to fit
a Pareto distribution in three of the four applications we tested. The distribution of
chunks with large computational load is harder to classify because the numbers are
smaller. Most importantly, these results show that it is very easy to predict which
chunks will perform the most work, and these can be preemptively moved to either a
dedicated processor or to one with a much smaller load, in a method similar to the one
proposed by Harchol-Balter and Downey.

Karen Glocer
UC Santa Cruz

144 Student Internship Research Summaries

Summary

Numerical simulations performed on LLNL supercomputers are generating
unprecedentedly large amounts of data. A standard method for visualizing,
exploring, and understanding this data is to examine various isocontours.

The problem with directly viewing the isocontours is that each consists of hundreds
of millions of elemental triangles. Surfaces of this size cannot be viewed at interac-
tive frame rates on conventional desktop machines. Intelligent preprocessing tech-
niques and runtime algorithms are needed for interactive exploration and visualiza-
tion. The goal of this project is to develop a system for dataset exploration on desk-
top workstations.

Large datasets are divided into subsets called bricks and stored on disk or on a remote
system. These bricks are loaded and unloaded by the application as they are needed so
that system resources are effectively utilized.

Interactive frame rates can be achieved using algorithms that employ multiresolution
data structures with view-dependent rendering. Multiresolution data structures make
better use of available storage space and computational power by representing impor-
tant areas with more detail and less important areas with less information. View-
dependent rendering selects what portion of the data to render based on where the
user is looking and on the user's perception of the data. Objects outside the field of
view do not need to be rendered, and objects that are far away can be rendered at
lower resolutions. View-dependent rendering takes advantage of the multiresolution
data structure to efficiently select what to draw. Our multiresolution data structure is a
recursive tetrahedral mesh based on longest edge bisection. The mesh structure sup-
ports fast, local refinement necessary for view-dependent rendering. In addition, it
supports an efficient method for ensuring mesh continuity required for iso-surface
extraction. View-dependent rendering calculates the distortion on the view screen; it
adjusts the refinement of the multiresolution mesh, selecting finer levels where more
detail is needed and coarser levels where less detail is needed. Our continuing work is
focused on working with large datasets, accurate representation of the data, and com-
putational optimizations.

A paper documenting our summer work has been published at the 2002 IEEE
Visualization Conference. It is also available as UCRL-JC-146819. Our continuing
work is focused on working with large time-varying datasets, accurate representation of
the data, and computational optimizations including occlusion culling, asynchronous
rendering and compression.

Interactive
Exploration of Large
Isosurfaces in
Volume Datasets
Benjamin Gregorski
UC Davis

145

Institute for Scientific Computing Research

Student Internship Research Summaries

Summary

The immersed boundary (IB) method provides a mathematical and computation-
al framework for addressing problems involving fluid-structure interaction and
has proved to be especially useful in simulating biological fluid dynamics.

Realistic simulations that use the IB method require both high spatial resolution and
very small timesteps. Consequently, high performance computing is an important com-
ponent of simulation research employing the IB method.

Currently, all high performance IB software is designed to run on shared-memory vec-
tor machines. There is a clear need to develop IB software which will run efficiently on
distributed-memory computers. We are harnessing the expertise available at CASC to
develop such software.

The IB method specifies the interaction of a fluid, described as an Eulerian variable,
and an elastic material, described as a Lagrangian variable. Consequently, the fluid is
typically discretized on a Cartesian grid, while the elastic material is described by a
network of Lagrangian points. A smoothed approximation to the Dirac delta function
is used to connect these two quantities. Through the discrete delta function, quantities
such as velocity may be interpolated from the Cartesian grid to the Lagrangian points,
and quantities such as force or density may be spread from the Lagrangian mesh to the
Cartesian grid.

High spatial resolution is required near the boundaries in order to capture important
boundary layer flow. Since the current discretization of the IB method is very well suit-
ed for use of structured AMR, we are developing IB software using the SAMRAI library.

After one summer’s work, single level IB software using SAMRAI and hypre is nearly
complete. This software should allow for IB computations which make effective use of
distributed-memory computational facilities.

Upon completion of the single level IB software, we will begin incorporating AMR into
the solvers. Currently, there is no parallel implementation of the IB method that
includes AMR. We are also interested in extending the IB method to coupled electrical-
mechanical biological models.

We are also interested in developing new computational approaches for fully implicit
temporal discretiza-tions of the IB equations. The current semi-implicit discretization
typically requires very small timesteps due to the stiffness of the IB equations. An effi-
cient implicit timestepping scheme could potentially ease this timestep restriction and
allow for more realistic simulations.

A Parallel, Adaptive
Implementation of
the Immersed
Boundary Method
using SAMRAI
Boyce Griffith
New York University

146 Student Internship Research Summaries

Summary

Almost every kind of data contains noise. Noise reduction is a required step for
any sophisticated algorithm in computer vision and image processing. This
problem has existed for a long time and there is no general-purpose solution

for it. A tradeoff always exists between the removed noise and the blurring in the
image. The use of wavelet transforms for signal de-noising has been started in last
decade. The capability of wavelets to render detail about spatial-frequency information
is the main reason for this investigation. This property promises a possibility for better
discrimination between the noise and the real data. Successful exploitation of wavelet
transforms might lessen the blurring effect or even overcome it completely.

There are two main types of wavelet transforms – continuous and discrete. Because of
the discrete nature of computers, computer programs exploit the discrete wavelet trans-
form. The discrete transform is very efficient from the computational point of view in
operation count and in compression of storage through decimation – the discarding of
fine-scale data that is not needed to represent regions of coarse scale variation only. Its
only drawback is that it is not translation invariant. Translations of the original signal
lead to different wavelet coefficients. In order to overcome this and to get more com-
plete characteristics of the analyzed signal, the undecimated wavelet transform was
proposed. It carries out the full transform without decimating the signal. Thus, it pro-
duces more precise information for the frequency localization. From the computational
point of view the undecimated wavelet transform has larger storage space requirements
and involves more computations.

There are two classical algrorithms for computing the undecimated wavelet transform
exist – “algorithm a trous” and Beylkin's algorithm. These algorithms approach the
problem from different directions. Another class of undecimated algorithms has been
discovered in a search for completely different characteristics. We have constructed
three new undecimated algorithms and tested their performance for image de-noising.
The experimental results have shown that these algorithms have better performance in
the terms of noise the removal/image blurring ratio.

Undecimated
Wavelet Transforms
for Image De-noising
Aglika Gyaourova
University of Nevada, Reno

147

Institute for Scientific Computing Research

Student Internship Research Summaries

Summary

Mesh generation plays a vital role in physics simulations. The quality of the
mesh strongly correlates to the quality of the simulation: A problematic
mesh can lead to inaccurate answers in simulations. It is therefore worth

investigating the mesh quality before simulation, to avoid wasting time and resources
on a simulation only to find inaccurate results – or worse, not to notice such results.

Three different classifications of algorithms were used. Individual element metrics from
the Verdict library were incorporated, for both two- and three-dimensional meshes.
Such metrics include aspect ratio, skew, taper, volume uniformity, area uniformity,
stretch, diagonal ratio, oddy, condition, jacobian, scaled jacobian, shear, shape, relative
size, shape and size, and others. Topological checks were also used. Measurements of
node degree, and Eulerian conformal test algorithms were coded and incorporated.
Interference checks were also developed to ensure the mesh was not tangled and ele-
ments did not overlap. Such tests were incorporated into the Visit visualization project,
and the Draco mesh generation project. In such programs, elements of poor quality can
be assessed, and then visually identified.

An investigation of poor metric correlations is being considered, and may be per-
formed in the future. The current mesh quality tests will be used in multiple simulation
projects to prescreen meshes before simulation.

Mesh Quality
Analysis
Matthew Haddox
University of the Pacific

148 Student Internship Research Summaries

Summary

HADES is a high-fidelity radiographic simulation code that can handle both
mesh files and combinations of simple volumes such as spheres, ellipsoids,
and cylinders. The Stochastic Engine is a code that works with a forward

simulation code and experimental data to perform inverse reconstructions. It uses pow-
erful statistical techniques to “guide” a random walk through the parameter space speci-
fied by the user. Together, HADES and the Stochastic Engine grant more powerful
tomographic capabilities than traditional techniques, especially when the number of
experimental radiographs is limited by experimental conditions.

A full Python installation, including several extension packages, was installed on the
local Linux machine. The Stochastic Engine (a set of Python modules) statistical opti-
mizer was also installed. Python modules were developed to vary input parameters to
the forward model. The radiographic simulation code HADES was ported to the sys-
tem and installed as the forward model into the Engine.

Concurrently, several metrics (e.g., Euclidean distance) for image comparison were
developed and tested. The metrics are available to be incorporated into the Engine as
user-selectable Likelihood Functions.

The combined simulation-optimizer was successfully tested with a single sphere, an
ellipse-sphere Boolean object, and a helical post. Each object had at least two model
parameters that were examined during the optimization process, and which were accu-
rately reconstructed.

The integrated package will be used to analyze several experiments in which only two
or three radiographs were taken. It is hoped that some expertise can be gained using
the engine to estimate variances in various radiographic parameters, so that the corre-
sponding image analysis can be made more quantitative.

Limited-view X-ray
Tomography with the
Stochastic Engine
Keith Henderson
Purdue University

149

Institute for Scientific Computing Research

Student Internship Research Summaries

Summary

The continuously increasing rate of CO2 emissions into the atmosphere is a
growing concern of climatologists. It is hypothesized that an excess of such
gases will produce a greenhouse effect thus increasing global temperatures and

ultimately distorting global climate. As an alternative to releasing greenhouse gases
into the atmosphere, it has been proposed to deposit them in the ocean. Major con-
cerns of such “carbon sequestration” are: (1) the amount of CO2 that escapes back into
the atmosphere and (2) any biological impacts brought about by changes in oceanic
pH levels.

Ocean General Circulation Models (OGDM) are used to model sequestered carbon
over a time scale of centuries. The OGCM used by LLNL’s Climate and Carbon Cycle
Modeling group shows discrepancies in pH changes between fine and coarse grids. An
even finer grid is needed to determine convergence, but refining the entire grid will be
quite costly in terms of computer time (on the order of months). Adaptive Mesh
Refinement (AMR) allows desired sections of the grid to be refined, thus reducing run
time considerably.

It is the goal of this research to produce an OGCM that uses AMR. Such a tool will
be very useful for areas such as carbon sequestration. For implementing AMR, the
LLNL-developed software package SAMRAI (Structured Adaptive Mesh Refinement
Application Infrastructure) is used. Refinement of the grid on which the tracer field is
hosted is based on gradients and possibly other criteria as needed. In addition, regions
of critical topography may be refined if necessary.

Current tools developed are time integrators common to OGCMs but uncommon to
AMR. The numerics implemented by these integrators include leapfrog, predictor-cor-
rector, and Runge-Kutta. Tests were formed in 2D on a convection/diffusion model
and on a shallow water model. Data for both cases was defined at cell centers. Work
for the immediate future involves modifying the integrators to advance data on a stag-
gered grid. Such grids are more typical of OGCMs which define momentum at nodes
and all other quantities (pressure, temperature, salinity, etc.) at cell centers.

An Adaptive Grid
Method for an Ocean
General Circulation
Model
Aaron Herrnstein
UCDavis

150 Student Internship Research Summaries

Summary

Very large time-varying datasets, such as the ASCI Turbulence PPM
Simulations, will require temporally aware compression algorithms to facilitate
interactive isosurface visualization. This may be accomplished, in part, by re-

parameterizing the isosurface mesh to a form more compatible with compression and
interactive display: a multiresolution mesh structure. The final steps in this process are
the fitting of a subdivision surface to the re-parameterized mesh, and the compression
of the surface. Surface patch trimming was explored as a way to “cut” into an isosur-
face, selectively revealing hidden features.

The fitting algorithm is based on the quasi-interpolation method of M. Duchaineau,
which is simple and local. The algorithm has been extended to adaptively sacrifice
locality for accuracy (a user-specified error tolerance is met) at lower levels of resolu-
tion, where improving the detail coefficients is computationally inexpensive.

The patch trimming algorithm is a variant of Warnock's algorithm, extended for view-
dependant multiresolution trim curves. A toy implementation of the trimming tool was
implemented for two-dimensional domains. A compression algorithm remains to be
implemented.

The fitting algorithm should be tested with CIPIC's (http://graphics.cs.ucdavis.edu) re-
meshing pipeline, and on more realistic data. A comparison with the wavelet approach
of N. Litke should be made and filtering of the surface data should be explored.
Creating temporally coherent parameterizations is also a topic of future research.
Lastly, an interface for interactive trimming of surfaces should be implemented.

Surface Patch
Trimming for
Isosurface
Visualization
W. Taylor Holliday
UC Davis

151

Institute for Scientific Computing Research

Student Internship Research Summaries

Summary

The goal of this project is to provide certain checks in the communication data
output in the Kull-Lite data structure. There are certain problems with this
aspect of Kull-Lite when running serial, on one processor, with multiple

domains. The goal was to take the output and provide several checks on the data to
locate where the possible error is present. This would give some insight on to where
the problem would be located and hopefully aid in debugging.

The first task at hand was to understand the parallel programming aspect of the code
and how to communicate between processors using nonblocking communication with
the Message Passing Interface (MPI) in C++. Once a reasonable understanding was
obtained of how that process worked, a study of the Mesh design and its representa-
tion in the code was needed. To accomplish this objective we used MPI in C++ for the
parallel check, and were also capable of running these checks in serial. The first step is
to verify that all sent and received data on the different domains matched in content,
which consists of checking all the zones, faces, and nodes. The next priority is to
check each domain to reassure that it only had data that it should own – no more and
no less. Next, we confirm that all the data to be sent is on the domain boundary, adja-
cent to the data to be received. The final check is similar to the previous, except from
the receive data side, checking to make sure all its data is on the domain boundary,
adjacent to send data.

From some trial tests, this procedure has shown progress in finding regions of code
where communication bugs occur. These checks will continue to be used and will pro-
vide a guide status report for when the data is created, displaying any possible errors
located within it. The PMESH team has already found and fixed an error that was
revealed by the checks program implemented as described above.

PMESH - CommData
Checks
Bryan Hunter
Allegheny College

152 Student Internship Research Summaries

Summary

Contemporary scientific simulations frequently produce large datasets consist-
ing of voxels, representing a 4D volumetric set of values. Such datasets may
consume several terabytes of space, and researchers need to inspect them, but

usually in practice in only a couple of senses: some high-level views through time, and
small sections through time. To facilitate these common modes of interacting with ter-
abyte datasets, we propose a compression method that reduces the size of the dataset,
and allows small sections of the dataset to be viewed through time slices.

To address these requirements three different approaches have been tried. All are
extensible to 4D, to take advantage of the coherence in time. We tried wavelets, inter-
polation, and an extrapolating predictor. Of the different options present in the tech-
niques, the predictors work better in the L-infinity metric, while wavelets outperform
in L-2 metric. These techniques are complementary, for instance, wavelets do not allow
for a small subset of the data to be decompressed without requiring traversing the
whole dataset; however, with the extrapolating predictor this can be avoided. The best
method we found to compress the corrections of the predictor was a geometric context
arithmetic encoder, which is a set of arithmetic encoders indexed by the previous pre-
diction in the dataset.

We plan to extend the scheme to multiple processors, something not easily accom-
plished because of the propagation of the error in the predictions, and the require-
ments of the arithmetic encoder. This would allow for a fast compression, and a guided
decompression that chooses only the important parts of the dataset, not the whole.
This advance is motivated by the new prevalence of multiprocessor machines, and the
perspective that there is a lot to gain.

4D Compression
Lorenzo Ibarria
Georgia Institute of Technology

153

Institute for Scientific Computing Research

Student Internship Research Summaries

Summary

The reliable simulation of contact problems is of great importance in many
applications. In virtually every structural and mechanical system there exists a
situation in which one deformable body comes in contact with another.

Signorini’s problem, describing the contact of a linearly elastic body with a rigid fric-
tionless foundation, is a classical problem and a basis for many generalizations. The
construction of fast and reliable solvers is a challenging task due to the intrinsic nonlin-
earity of the problem – prior to the application of loads to a body the actual contact
surface is unknown so a free boundary problem is obtained. Most of the methods
derived for Signorini’s problem assume that the body that comes in contact has a regu-
lar shape so can be approximated by a structured mesh. The problem that we are solv-
ing is a Signorini’s problem with a body with complex geometry approximated by an
unstructured mesh.

The finite element method is used for the discretization of the problem, so the element
matrices are explicitly available. We need a method of optimal order for the solution of
the discretized problem, namely multigrid methods. The standard geometric mutigrid
can be applied only to problems with structured grid, so we are interested in an alge-
braic multigrid approach. Possessing the element matrices, we can use AMGe (element
based algebraic multigrid), but we need to take into account specific difficulties of
Signorini’s problem – the existence of a contact surface. A special coarsening away
from it is appropriate.

Summarizing, we are creating and applying a nonlinear element based algebraic multi-
grid method with special coarsening away from the contact boundary. The code for
the Projected Block Gauss Seidel Relaxation for Signorini’s problem and the code for
the coarse grid solution procedure – based on Dostal’s algorithm – has been developed.

An extension to the visualization tool GlVis for the visualization of the grids created by
the coarsening procedure in AMGe has been accomplished in both 2D and 3D. The next
step is the incorporation of these codes in the full code for the nonlinear AMGe for
Signorini’s problem. Our future plans include solving the two-body contact problem.

Algebraic Multigrid
Methods for Contact
Problems in Linear
Elasticity
Ana Iontcheva
University of California, Davis

154 Student Internship Research Summaries

Summary

The motivation for this work stems from the need to perform volume rendering
of unstructured datasets at interactive frame rates. This level of performance is
essential for exploring and visualizing large-scale scientific datasets. In order to

improve the performance of the volume renderer, we propose a scheme that allows for
more efficient usage of the graphics hardware, In particular, we introduce a preprocess-
ing stage to the volume renderer in which the unstructured dataset is first sorted into
Hilbert order and then compressed by eliminating duplicate vertices.

At the current stage of development, an unstructured dataset is first sampled, slice-wise,
along the X, Y, and Z directions. For each slice, the sampled data points are triangulat-
ed using a Marching Cubes algorithm. Depending on the viewing direction, the actual
rendering is accomplished by compositing one of the three sets of slices. It is at this
point that we introduce the preprocessing stage to improve the rendering speed.

Our goal for this project is to improve the overall rendering speed of the volume ren-
derer by compressing the unstructured dataset and optimizing cache performance for
graphics hardware. Our compression scheme is simple yet effective. For each slice, it
eliminates all the duplicate vertices generated from the Marching Cubes algorithm.
There are two types of duplicate vertices: numerical and theoretical. For most cases,
the coordinates of duplicate vertices share the exact same numerical values. However,
due to finite precision, the Marching Cubes algorithm can produce duplicate vertices
whose coordinates may not match numerically. In order to efficiently eliminate the
duplicated vertices without 0(N••2) comparisons, we utilize a 2D hashing scheme in
which only vertices within the same hash bin are compared. To ensure that theoretical
duplicates are eliminated, we also compare vertices in the immediate neighboring bins
as well. The number of hash bins is determined adaptively for each slice, based on the
density of the vertices (i.e. number of vertices divided by their spatial extent). Using
this method, we were able to achieve 80-85% data reduction.

Our cache optimization scheme involves sorting the triangles on each slice based on the
Hilbert order. A Hilbert curve is a space-filling curve that can be drawn from one point
on a plane to another without any intersections. Essentially, this curve fills up an entire
region before proceeding to the next. In a similar manner, we sort the triangles on each
slice so that all the triangles within a region precede the ones in the following region.
Using the Hilbert order, we achieve near optimal spatial coherence for the triangles on
each slice, which results in near optimal cache utilization for the graphics hardware. In
this case, we conducted our experiments on NVIDIA GeForce3 graphics cards.

Currently, all the preprocessing steps are implemented with respect to each slice,
which is necessary for the compositing step. However, since the number of vertices per
slices can vary drastically, the preprocessing and rendering times can vary drastically as
well. To address this issue, we are considering dividing each slice into blocks of fixed
size and render the preprocessed blocks instead.

Accelerating Volume
Rendering by Cache
Optimization for
Graphics Hardware
Ming Jiang
Ohio State University

155

Institute for Scientific Computing Research

Student Internship Research Summaries

Summary

The goal of this project was to develop an efficient parallel solver for finite ele-
ment problems posed on large unstructured grids. Such problems arise natural-
ly in simulations, where only a very fine discretization of the domain is can

resolve the physics of interest. In order to achieve performance comparable with multi-
level methods for the geometrically refined case, one can use an algebraic method
based on sequence of coarsened meshes. Our objective was to develop a parallelization
of one such algorithm, namely, the agglomeration-based algebraic multigrid for finite
element problems (AMGe).

Our method starts with a partitioning of the original domain into subdomains with a
generally unstructured finite element mesh on each subdomain. The agglomeration-
based AMGe is then applied independently in each subdomain. It needs access to the
local stiffness matrices which are reconstructed after coarsening by the variational prin-
ciple. Note that even if one starts with a conforming fine grid, independent coarsening
generally leads to non-matching grids on the coarser levels. We use an element-based
dual basis mortar finite element method to set up global problems on each level. Since
AMGe produces abstract elements and faces defined as lists of nodes, the mortar multi-
plier spaces are also constructed in a purely algebraic way. This construction requires
inversion of the local mass matrices on each interface boundary shared between two
subdomains. This is possible because of the way AMGe agglomerates the faces. This
completes the (non-nested) spaces.

The algorithm was implemented in a general, object-oriented MPI code that uses parts
of the HYPRE preconditioning library. Specifically, the program constructs the stiffness
matrix A and the mortar interpolation matrix P on all levels and stores them in the
ParCSR parallel format. The global matrix for the mortar method is P^T A P and is
computed using a “RAP” procedure from HYPRE. We need explicitly the entries of this
matrix, since we use parallel Gauss-Seidel with processors coloring as a smoother on
each level of the multigrid. Our experience shows that this is a good choice, because
its implementation is independent of the spectrum of the matrix. A software frame-
work was developed, where the geometric information provided by a mesh generator is
converted to an algebraic one by a problem generator. This is in turn read by the
solver, which is independent of the coordinates, the dimension, and the type of finite
element basis functions used. Currently, we have problem generators for model two-
dimensional and general three-dimensional problems. They run in parallel, refining
independently in each subdomain and allowing for general geometry including non-
matching fine grids in three dimensions.

A number of tests were performed in order to investigate the properties of the method.
Results were obtained on ASCI Blue Pacific running jobs with more than 500 processors.

Parallel Algebraic
Multigrid Method
for Finite Element
Problems Based on
Domain
Decomposition
Tzanio Kolev
Texas A&M University

156 Student Internship Research Summaries

Summary (continued)

The general observation is that the method is reasonably scalable when the number of
processors is increased, while the size of the problem in each processor is kept con-
stant. The setup cost (as with many algebraic methods) is high, but remains bounded
as we use more processors. The solution time also scales well if we ignore the time for
the exact solve on the coarsest level of the multigrid. The latter starts to dominate for
large number of processors and dealing with it through some type of processor
agglomeration is a topic of future research.

Another project I was involved in was the numerical testing of negative-norm based
least-squares algorithms for div-curl systems. Two-dimensional computations, demon-
strating a uniform convergence rate for a method involving finite element space
enhanced with “face-bubble” functions were performed. This study is motivated by our
interest in robust solvers for the Maxwell equations and is still in its initial stage.

Tzanio Kolev
Texas A&M University

157

Institute for Scientific Computing Research

Student Internship Research Summaries

Summary

The discrete differential forms framework for wave equations defines a mimetic
finite element method for discretizing three-dimensional scalar and vector
wave equations.

Scalar and vector basis functions are used to define the discrete differential forms. The
method is valid on unstructured grids and conserves all relevant physical quantities
such as energy, charge, momentum, and mass. For the lowest order basis functions, the
method is second-order accurate in space and time.

Full-wave, parallel simulations in the fields of electrodynamics, linear elasticity, linear
acoustics and linear magnetohydrodynamics have been completed. Currently, the
research is focused on simulating optical structures such as optical fibers and photonic
band gap devices. One of the major accomplishments of this framework is a mimetic
discretization of the electrodynamic Helmholtz equation that shifts all zero eigenval-
ues to calculate the extremal eigenvalues.

In the future the method will be enhanced with higher order basis functions (in
progress), h/p-adaptivity and complex materials.

A Discrete
Differential Forms
Framework for
Wave Equations
Joseph M. Koning
UC Davis

158 Student Internship Research Summaries

Summary

Large application codes in scientific computing are usually based on the use of
libraries, which provide a variety of data structures and functions. In the case of
object-oriented applications, these libraries implement high-level abstractions

such as array classes, grid classes, particle classes, etc. Unfortunately, the use of high-
level abstractions, which are defined in underlying libraries, cannot be optimized by
any standard compiler since the semantics of these abstractions are user-defined and
therefore unknown to the compiler. This lack of knowledge is a major reason for the
poor efficiency of the majority of object-oriented scientific codes: the Mflop/s rates
which can be measured at runtime are just tiny fractions of the theoretically available
peak performances that the vendors claim for their machines.

ROSE is a software infrastructure for generating library-specific preprocessors which
perform source-to-source transformations; e.g., eliminating the need for creating tem-
porary objects, fusing and blocking loops, and introducing several other kinds of
cache-based transformations into numerically intensive application codes. Internally, a
preprocessor (which has been built using ROSE) parses the original code (currently
C++ code) and assembles the corresponding abstract syntax tree (AST). Automatically
generated tree traversal routines based on inherited and synthesized attributes are then
employed in order to both recognize library-specific high-level abstractions and intro-
duce transformations by replacing old AST fragments by new ones. These new AST
fragments are generated by building context-specific code strings and then passing
them to the compiler front-end. After the AST has been modified according to the
transformations specified by the library writer(s), it is unparsed. This final step yields
the optimized C++ source code.

The work during this summer has focused on two issues. The first task was the han-
dling of preprocessor directives such as comments, “include” directives, etc., and their
introduction into the generated C++ source code. The problem with these directives is
based on the fact that they are not part of the C++ language itself but processed by
the standard C++ preprocessor before the actual C++ compiler front-end is called.
The second task was to implement the generation of C++ source code which performs
cache-optimized array assignment statement transformations for the A++/P++ pre-
processor. This preprocessor is used to enhance the performance of applications based
on the A++/P++ array library that was also developed at CASC.

Generating Library-
Specific Optimizing
Preprocessors
using ROSE
Markus Kowarschik
University of Erlangen-Nuremberg

159

Institute for Scientific Computing Research

Student Internship Research Summaries

Summary

The Automated Testing System (ATS) is a tool for testing KULL executables.
The ATS runs KULL job scripts, then compares the results to previous runs or
analytical data to determine if an executable has passed or failed. However,

determining correctness is a challenge for two reasons: (1) job scripts do not have a
standard type of output or output format – users can have scripts handle output in almost
any way they want and (2) there is no single standard for determining when output is
“correct”. New output is generally compared to some kind of reference data, but this can
be done with many different comparison routines – including having a human manually
review results. A main focus of development of the ATS this summer was designing a sys-
tem to overcome these two difficulties. I also added a few other features including a GUI
and a new method for storing results and references in the ATS database.

Rather than try to restrict “test” job scripts to certain types of output and predefined com-
parison routines, the ATS was designed to be extremely flexible by using several libraries:

1) The AtsOutputTypes library defines all types of output that the ATS will accept from a
job script. All built-in Python types are in the library, and users can easily add new types.

2) The AtsReturns library defines functions to return output from a test script to the ATS.
Output is serialized using Python’s pickle module, dumped to standard out, then unpick-
led by the ATS. Since both the ATS and the test script can access the AtsOutputTypes
library, any object type defined in the library can be returned successfully.

3) A third library, AtsComparisons, contains comparison routines that can be accessed
either within the job script or by using the “review” command in the ATS. New com-
parisons can be added to the library at any time. The ATS also allows users to interac-
tively choose comparison routines and set arguments to the comparison.

In addition to the flexibility of these libraries, users can easily change what reference data
job results are compared to by adding new references either from a run result or from a file.

Put together, all of these features make the ATS is extremely flexible and extendible. It can
handle literally any type of output, as long as the type has been registered in the
AtsOutputTypes library, and perform any comparison, as long as the comparison has been
added to the AtsComparisons library. Although this amount of flexibility might be overkill
in many testing systems, it is essential for thorough testing of a package as complex as KULL.

Future plans for the ATS include: (1) adding more routines to the comparisons library,
which is somewhat sparse at the moment, (2) changing the run manager to allow jobs
to be run on the batch system as well as interactively, and (3) adding an interface to
Perforce to obtain version information on test scripts and executables.

Extending the KULL
Automated Testing
System
Dedaimia Kozovsky
University of Wisconson-Madison

160 Student Internship Research Summaries

Summary

Acommon and useful technique for visualizing simulation data is to compute iso-
surfaces. Contours of elevations found in topographic maps, where points on
the same height on a terrain are shown as curves, are a familiar example of iso-

surfaces. We are interested in computing iso-surfaces for volumetric data that is time
varying. Such datasets are produced by simulations of physical phenomenon like fluid-
flow, mixing of liquids like oil and water, and so forth.

Some questions that come up during visualization of iso-surfaces are how many com-
ponents are present in the iso-surface? What components merge, split, appear or disap-
pear if one changes the iso-value by a small amount? A contour tree is a useful struc-
ture that can be used to answer these questions. We are interested in computing a vari-
ant of the contour tree structure that can be applied to time-varying volume data.

Our technique is based on a topological approach to the problem of constructing time-
parameterized contour tree. Given the fact that the nodes of a contour tree can be
mapped to the critical points - maxima, minima, saddles - of the data, we aim to com-
pute the trace of critical points as a function of time. We call this trace the “gamma”
curve. Given the contour tree for time t=0, and the “gamma” curve we aim to compute
the contour tree for any subsequent time t=t'.

During the summer we have implemented the construction of “gamma” for a data sam-
pled on a uniform grid. We use a canonical connectivity scheme wherein each grid cell
is split into simplices about the main diagonal. We have computed gamma for a few
small datasets of size 64x64x64x20 (i.e., a cube of size 64 on a side through 20
timesteps) and plan to work of larger data sets.

In continuation to the work done this summer we hope to develop the theory and
algorithms for constructing time-parameterized contour trees. This work will require
significant effort during the coming year and next summer.

Time-parameterized
Contour Trees
Ajith Mascarenhas
University of North Carolina at
Chapel Hill

161

Institute for Scientific Computing Research

Student Internship Research Summaries

Summary

Rising processor speed, unaccompanied by corresponding reductions in memory
access latency, has caused the performance of codes to be limited by memory
accesses. Strided memory accesses, or streams, can be a significant source of

memory stalls in loops in practical applications, if undetected. If known to exist in an
application, they can be targeted by a host of optimizations, such as stream prefetch-
ing, relocation, remapping and vector loads.

Existing stream detection mechanisms either require special hardware, which may not
gather enough stream statistics for subsequent analysis, or are confined to limited com-
pile-time detection of array accesses in loops. Formally, little treatment has been
accorded to the subject; the concept of locality fails to capture the existence of streams
in a program's memory accesses.

In this project we define spatial regularity as a means to depict the presence of strided
memory accesses. We develop measures to quantify spatial regularity, and design and
implement an on-line, parallel algorithm to detect streams, and hence regularity, in
running applications. We identify critical program sections for regularity measure-
ments by using PAPI – a performance measurement API – to access hardware perform-
ance counters portably. Dyninst's dynamic binary translation infrastructure is leveraged
to perform selective and transitory instrumentation in the application. This allows the
user to limit the stream detection overhead at the cost of measurement accuracy. We
use examples from real codes and popular benchmarks to illustrate how stream infor-
mation can be used to effect profile-driven optimizations.

Detecting and
Exploiting Spatial
Regularity in
Memory References
Tushar Mohan
University of Utah

162 Student Internship Research Summaries

Summary

Existing multi-resolution models for large-scale simulation data can support a
wide range of spatial range queries. However, queries about non-spatial vari-
ables are not necessarily efficient. Non-spatial variables are stored in the multi-

resolution model in a statistical form, where the minimum, maximum, mean, and stan-
dard deviation for each variable are stored. The main objective is to build an indexing
scheme on top of the multi-resolution model described in to efficiently answer non-
spatial queries while keeping the efficiency of the spatial queries.

Our approach is to map the problem into a spatial access method (SAM). The non-
spatial v variables in the multi-resolution model are mapped into non-zero sized hyper-
rectangles in the v-dimensional space. The state of the art software for spatial indexing,
GiST, is used. However, results from GiST are completely unsatisfactory. GiST does
not scale with the massive size and the high-dimensionality of scientific data, a phe-
nomenon known as the curse of dimensionality.

Reviewing the literature of spatial indexing methods, it is clear that the curse of dimen-
sionality has not been investigated for spatial access methods. A similar but easier
problem, which is indexing zero-sized objects in the high-dimensional space, is well
investigated with some solutions for the curse of dimensionality. In this research, we
aim to solve the curse of dimensionality for spatial access methods. As a result, a new
spatial indexing scheme, termed the Multi-Resolution file, MR-File for short, is pro-
posed. MR-File is scalable in terms of dimensionality and data size.

MR-File: A New
Multi-Resolution
Spatial Index for
High-Dimensional
Scientific data
Mohamed F. Mokbel
Purdue University

163

Institute for Scientific Computing Research

Student Internship Research Summaries

Summary

Parallel computing normally calls to mind hundreds of processors working away
at some big problem: modeling a galaxy of stars under gravitation, modeling
the weather over Kansas, calculating pi to fantastic precision, or analyzing

trends in the stock market. Where feasible, parallel computing delivers these results
much more rapidly than serial. Why, then, don’t all personal computers have several
cheap processors instead of one expensive one? Why can’t one’s palm pilot link to
every palm in a room, rather than just one at a time? In general writing parallel pro-
grams is more difficult, and takes more time. Our main interest in this project is to
optimize parallel code: to make it be “more parallel.”

Making programs “more parallel” involves several levels of parallel-algorithm design.
Within the file system I developed parallel algorithms to sort and parse enormous files,
and to distribute the data to an arbitrary number of processors. To handle per-proces-
sor balancing issues I used several randomizing techniques, which appeared to be suc-
cessful and scalable. Several constraints occurred at the per-system memory level,
where it was necessary to keep a minimal amount of data in memory during the sorting
process. Specifically, I used an Oct-Tree data structure, well known in graphics
research for improving rendering performance, to spatially sort files and to improve
locality in the parallel algorithms. At the distributed systems level I used MPI, the
Message Passing Interface, to allow inter-process communication. This, in particular,
became a conceptual hurdle because of the inherent difficulties with deadlock and test
case reproduction.

Additional efficiency in programming parallel systems may reside in more automated
time analysis techniques used to analyze time performance. This information would be
useful for finding performance bottlenecks in working code. Analysis also informs the
programmer of how close to the theoretically best performance his or her program has
achieved. This is perhaps not as important to performance as adding more processors,
but the potential is definitely interesting.

Parallel
Optimizations of
Parallel Algorithms
Evan Moran-Bernard
Carnegie Mellon University

164 Student Internship Research Summaries

Summary

Driven by the need to solve linear systems arising from problems posed on
extremely large, unstructured grids, algebraic multigrid (AMG) methods
have been recognized as an efficient way to treat sparse systems of the form

Ax=b. The advent of high performance computers with large numbers of processors
sparked interest in parallel versions of AMG that are capable of employing the avail-
able sheer computational power to solve large systems of equations in a robust fashion.
Although multigrid methods in general are known for optimal (i.e., O(n)) performance
in the solution phase and AMG particularly shows fast convergence rates for a wide
variety of problems, in general, results are still sometimes dissatisfying. The reason is
that the non-geometric approach — due to the lack of knowledge about an underlying
grid structure — requires a setup phase that is often remarkably expensive, and its per-
formance usually degrades further in a parallel environment.

Abstracting the implementation of the BoomerAMG, the parallel AMG solver integrat-
ed in the software package hypre (High Performance Preconditioners), we derived a
parallel computing model for the setup phase and described the performance of its
three major components in terms of the degree of the related matrix graph, the number
of unknowns, and of the processors involved. As it involves critical message passing
components, one key part was the analysis of one of the coarsening strategies used.
Additionally, several numerical tests were run and its results were compared to the
developed theory.

The aim of this work was to analyze the behavior of the AMG setup phase in a (mas-
sively) parallel environment on a distributed-memory architecture like ASCI Blue
Pacific at LLNL, and to gain insight as to those stages of AMG code / algorithm where
improvements can be achieved. The close collaboration with Rob Falgout and the
Scalable Linear Solvers Group at CASC assures that the results will lead to setup phase
improvements in the future.

Parallel AMG
Performance Issues
Arne Naegel
University of Heidelberg

165

Institute for Scientific Computing Research

Student Internship Research Summaries

Summary

Lustre is a high performance distributed file system being developed by Cluster
File Systems. The project is being assisted by Lawrence Livermore, Sandia, and
Los Alamos labs so that it may be used in the next generation of supercomput-

ing clusters.

One of the innovations in the Lustre file system is a distributed lock manager. Rather
than having a central server that each node must contact to lock resources, each node
in the cluster is capable of managing resources. This has two distinct advantages: First,
it eliminates the lock server as a single point of failure. Second, by allowing the node
that uses a particular resource the most to manage that resource, we eliminate the need
for many lock requests to be sent over the network.

Thorough testing is extremely important in any software project. It is especially impor-
tant in a system as complex as Lustre's distributed lock manager. My role in the project
was to develop a regression test that would verify that the locking subsystem works
correctly under a large volume of requests.

One goal of the test was to make it as independent as possible from other parts of
Lustre. If the test made heavy use of other parts of Lustre, it would be more difficult to
find the source of a failure.

Another goal was to balance testing as much functionality as possible with making it
easy to identify problem areas. In a test that tests everything, passing the test assures us
that everything is working correctly. However, failing such a test does not provide
much information in itself, since it could be any part of the locking subsystem.

In order to isolate the test from other parts of Lustre, it was put inside the Linux kernel.
This is currently the only way to directly access the locking subsystem. Another option
would have been to have a user-space test work with filesystem objects, putting various
resources under contention. However, this would defeat the goal of isolating the test
from the rest of Lustre. The test would be dependent on the whole system rather than
just the locking subsystem.

The test exercises the following functions of the locking subsystem:
– Enqueueing an extent lock
– Matching an extent lock
– Using completion callbacks to keep track of locks
– Using blocking callbacks to cancel locks

The test first starts some number of threads. Each thread then runs in a loop. In each
iteration of the loop, each thread randomly either tries to match/enqueue a lock on a

Regression Testing
for Lustre's
Distributed Locking
Subsystem
James Newsome
University of Michigan

166 Student Internship Research Summaries

Summary (continued)

random extent of a random resource, or decrement one of the lock references it already
holds. The test runs indefinitely until a user stops it. Short runs of the tests, on the
order of several hundred enqueues and matches, pass. Unfortunately, I have observed
some strange behavior when the test is run longer. It is currently unclear whether this
is caused by a bug in the lock manager, or a bug in the test itself.

For the future, the first thing that needs to be done is to find what is causing the test to
fail on long runs. Once this is done, there are several enhancements that could be
added to the test.

First, the test should also test lock conversions. The code for this is partially written,
but I left it disabled for now in favor of getting the simpler version of the test to work.
Once this is added, the test will be able to verify the functionality of all the basic parts
of the distributed lock manager.

The next step after that would be to make the test more distributed. Currently it is
designed to run only on a single node. A more realistic and thorough test would be to
have several nodes all trying to work with the same set of resources.

After these features are added, I believe the test would be complete. The only other
thing to add to the test would be boundary conditions, such as cancelling a lock that
hasn't been granted yet, or having a node fail during the test.

James Newsome
University of Michigan

167

Institute for Scientific Computing Research

Student Internship Research Summaries

Summary

Multigrid is firmly established as the method of choice for systems of elliptic
and parabolic partial differential equations and the Laplacian-type terms
that dominate the ill-conditioning of more general systems of PDEs.

Many practical codes have been deployed in ASCI and other applications based on
multigrid methods, leading to increased desires to extend multigrid to additional
regimes. The First-Order System Least-Squares formulation extends multigrid theory
to many such systems. However, the purely hyperbolic case has received relatively lit-
tle attention (or successful attention) from the multigrid community.

In this project we consider First-Order System Least-Squares formulations for purely
convective partial differential equations and analyze the multigrid perfor-mance for
solving the linear system arising from a finite element discretization. Prior research
exposed poor multigrid convergence results under certain boundary conditions with
Algebraic Multigrid (AMG). Local Mode Analysis (LMA) was applied to the resulting
finite element stencil and we explored a geometric multilevel framework to further
reveal the unexplained inefficiencies in the solver. The LMA predictions of relaxation
and two-grid performance were then compared to the actual implementation of the
Geometric Multigrid algorithm.

Through our analysis and numerical tests, we found both poor smoothing properties
and unsatisfactory coarse-grid approximations to cause the degraded performance.
Based on these results, we proposed adjustments on improving the smoothing and
coarse-grid components of the multigrid algorithm. Still, these new algorithms need
further investigation. This research will be continued at the University of Colorado,
where we intend to address issues such as scalability and robustness of the method.

Multigrid for Linear
Hyperbolic PDEs
Luke Olson
University Of Colorado at Boulder

168 Student Internship Research Summaries

Summary

Our goal is to develop a robust, efficient, and easy to implement surface repa-
rameterization technique. Parameterized surfaces are amenable, among
other things, to Continuous Level of Detail Control, Multiresolution

Editing, Texture Mapping, and most importantly, Compression.

Our technique begins with an arbitrarily triangulated surface and constructs a hierarchy
of fine resolution to coarse resolution surfaces. As the hierarchy is constructed, map-
pings between adjacent resolutions are maintained.

We reparameterize the surface by applying, in combination, a set of atomic operations.
These operators are Subdivide, Smooth, and Snap. The Subdivide operator refines the
base mesh by performing bilinear subdivision. This gives our surface a quadrilateral
grid-like structure. The Smooth operator minimizes the mesh distortion by trying to
make all quadrilaterals equally sized. Using the Snap operator we can project the base
mesh onto any level of the hierarchy.

Given these atomic operators we construct a set of Super operators: Smooth-Snap and
Subdivide-Snap. The Subdivide-Snap introduces new vertices in the base mesh and
projects these vertices onto the current hierarchy level. The Smooth-Snap reduces dis-
tortion by pulling vertices off of the current level of the hierarchy and then projecting
the modified vertices back onto the current hierarchy level. The end result is a repara-
meterization of the original surface.

To make this algorithm truly useful for large-scale data visualization we need to make
the algorithm work out-of-core. Extremely large data sets are being generated by
improved resolution scanners, sensors, and computer simulations. Often this data is
too large to fit in the main memory of a high-end workstation and in some cases even
in the main memory of the supercomputer that generates the data. The current algo-
rithm has been designed to generalize to out-of-core implementation.

A Hierarchical
Shrink-Wrapping
Approach to Surface
Reparameterization
Serban Porembescu
UC Davis

169

Institute for Scientific Computing Research

Student Internship Research Summaries

Summary

We are concerned with the finite element solution of Maxwell’s equations on
unstructured hexahedral grids. We focus our attention on the high-order
discretization of this problem, specifically the recently proposed differen-

tial forms based approach for constructing curl-conforming and divergence-conforming
vector bases. In the computational electromagnetics (CEM) community, it is well
known that in order to accurately perform electrically large simulations (i.e., simula-
tions whose characteristic dimension is many wavelengths long), high-order methods
must be used. Low-order finite difference and finite element methods are ineffective for
such problems due to numerical dispersion. Recently, several advancements have been
made in the field of (what are presently called) Vector Finite Element Methods. While
it is known that in general higher-order methods have less dispersion and should be
superior to low-order methods, this has not yet been demonstrated for Vector Finite
Element solutions of Maxwell’s equations. In addition, there are few high-order imple-
mentations of this method; and of these, none present a general technique for the con-
struction of hierarchical bases, which are necessary for any sort of p-refinement strate-
gy. In conjunction with my thesis project, my research this summer has been the devel-
opment and implementation of a method for solving Maxwell’s equations using
Discrete Differential Forms (DDF’s) of arbitrary order on unstructured hexahedral grids.

In the language of differential forms, we can unify several existing finite element meth-
ods using a clear and concise notation. Traditional finite elements (scalar nodal) as well
as vector finite elements (edge and face elements) and discontinuous scalar elements
are combined into one set of discrete differential forms. We begin by constructing
DDF’s of arbitrary order on a reference (or unit) hexahedron. We then define a set of
linear functionals (referred to as Degrees of Freedom) that map the DDF basis func-
tions to real numbers. These are necessary for the construction of element mass and
stiffness matrices. A major accomplishment of this summer was the development of a
general method for constructing hierarchical vector basis functions using an appropri-
ate set of Degrees of Freedom. A hierarchical basis is necessary for any p-refinement
method. DDFs on the reference element are then transformed via conformal mappings
to global mesh elements of arbitrary location, orientation and distortion.

Over the summer, the mathematical framework of this method was developed and
implemented in the FEMSTER framework. FEMSTER is a modular finite element class
library for solving three-dimensional problems arising in electromagnetism. The soft-
ware consists of a set of abstract interfaces and concrete classes, providing a framework
in which the user is able to add new schemes by reusing the existing classes or by
incorporating new user-defined data types.

Future work will include the integration of the FEMSTER library into a general parallel
matrix assembly program. Once this is complete, work will begin on a time stepping algo-
rithm in conjunction with the HYPRE library for time domain simulation of various electro-
magnetic transmission devices such as optical fibers and Photonic Band Gap devices.

High Order Discrete
Differential Forms
for Computational
Electromagnetics
Robert N. Rieben
UC Davis

170 Student Internship Research Summaries

Summary

The transition of the World Wide Web from a paradigm of static web pages to
one of dynamic web services provides new and exciting opportunities for bioin-
formatics with respect to data dissemination, transformation and integration.

However, the rapid growth of bioinformatics services coupled with non-standardized
interfaces diminish the potential that these web services offer.

For instance, the BLAST family of bioinformatics data sources allow biologists to com-
pare DNA and protein sequences with an existing body of knowledge to find similar
sequences in other organisms. BLAST provides data management and query services to
genomic data sources and allows research groups to set up local repositories or special-
ized sequence databases. One catalog lists over 500 such data sources, some subset of
which will contain data relevant to an arbitrary query.

Unfortunately, there is no common interface or data exchange mechanism for these
sites. When performing a search, the scientist chooses a set of known sites, enters a
query into each site, and integrates the result by hand.

The problems with this approach are numerous: the scientist may not have the most
current or most relevant site for the search at hand, the search must be entered multiple
times, and the results of the search must be merged together by hand to obtain an inte-
grated set of results.

Our challenge is to provide a common interface to the vast and dynamic assortment of
BLAST data sources. This problem can be divided into three sub-problems. First, how will
new sources of relevant information be integrated into the interface? Next, how can the inter-
face determine which discovered sources are relevant to a particular query? Finally, how can
the interface mediate between sources and produce an intelligently integrated result set?

We propose the notion of a service class description as a solution to the problem of dis-
covery, classification, and integration of bioinformatics sources. A service class descrip-
tion describes the relevant portions of the service from the point of view of the intend-
ed application. The description includes the various data types used by the service,
example queries and output, and a graph representation of how service class members
are expected to operate. For example, a simplified view of the DNA sequence BLAST
service class includes a DNA sequence input type, a BLAST result output type, and
descriptions of the intermediate pages. The control flow graph might show the input
page being connected to a result page, possibly through a delay page.

The service class provides an abstract view of bioinformatics sources that allows developers to
reason about the class rather than being concerned with the intricate details of each member.
Using the service class description, we are creating an integrated BLAST service that will
operate via a common application to an automatically discovered set of BLAST sources, each
wrapped to provide a transparent interface between the application and the data source.

A Web Services
Framework for
Bioinformatics
Daniel Rocco
Georgia Institute of Technology

171

Institute for Scientific Computing Research

Student Internship Research Summaries

Summary

The GenSim project is a generic simulator, that is mainly used to simulate a clus-
ter of machines that do distributed computing using message passing libraries.
GenSim is developed under C++ using object oriented techniques, for the pur-

pose of reusability, modularity, and maintainability. The reusability principle also goes
hand-in-hand with the generic nature of the project.

GenSim is a multi-layered simulator. At the very bottom level, there are seven differ-
ent classes. These base classes provide the general framework on which the simulator
runs. From a different perspective, these base classes can be seen as the engine of the
simulator. The different layers on top of this layer inherit properly to model specific
applications.

The naming scheme of these base classes might suggest that the framework is designed
to run only cluster models. In fact, other environments, such as a distributed database,
or a specific architecture can be modeled with the base classes, by implementing
appropriate interface layers.

The project currently has two layers implemented. The first layer is used to model
a programming language behavior. It provides tools like conditionals, deterministic
and probabilistic loops, system messaging, creation and termination of jobs, and
computation.

A system heap for the variables is not yet implemented, so the conditionals are only
probabilistic for the time being. We are able to have deterministic loops, due to the
internal structure of the loops. The statements (events) that are in the loop have no
idea about the current state of the loop. For instance, if a given loop body executes
three times, a computation event has no idea to which execution the current one
belongs; only the loop conditional event is aware of it.

The second layer is a subset of MPI, the message passing library. The layer provides
means to model blocking and non-blocking communication, waiting for non-blocking
communication, and collective communication. Blocking communication is modeled
using basic send and receive events. The events use a tag, and for every send event
there is a matching receive event in the peer, and vice versa. Non-blocking communi-
cation works the same way; however a wait must be called in order to make sure that
the communication has been completed. This forces a rule on our system. The loop
bodies have to be sound in terms of the non-blocking events they have. In other
words, they have to call the matching waits before restarting the loop. If the loop is
restarted without knowing that the non-blocking communication has been terminated
successfully, the action may cause the event to be discarded. Collective communication

The Generic
Simulator
Sadik Gokhan Caglar
University of San Francisco

172 Student Internship Research Summaries

Summary (continued)

in its nature is blocking, so it doesn't suffer from this possibility. Since all of the collec-
tive communication routines have the same requirements for execution (that is, all the
processes in the communicator call the same collective, with the same parameters),
they can be implemented in the same way. The differentiating property is the type of
the collective communication, which is handled by the tags, and the amount of time it
is likely to take to run.

Since in real runs the order of collective operations is not always fixed, a random num-
ber generator package, randlib.c from University of Texas is integrated into the system.
The computational, collective communication and point-to-point communication
events take advantage of different distribution functions of this package.

There are two front ends that the users can use to model algorithms; they can use C++
directly and link with the existing classes, or they can use the GenSim runtime envi-
ronment. The latter is encouraged. The Jacobi iteration algorithm is implemented as an
example how the suite can be used to model algorithms for the runtime environment.

The two layers are examples of the capability of the simulator. New classes can be
inherited from the existing classes to achieve more functionality. The runtime environ-
ment has to be updated with the possible newly added clusters, events, constraints,
messages, jobs or processors.

Sadik Gokhan Caglar
University of San Francisco

173

Institute for Scientific Computing Research

Student Internship Research Summaries

Summary

A common problem with object-oriented C++ scientific computing is that the
high level semantics of abstractions introduced (e.g., parallel array objects) are
ignored by the C++ compiler.

ROSE is a programmable source-to-source transformation tool for the optimization of
applications using high-level abstractions commonly found in C++ object-oriented
frameworks. In our work we target the A++/P++ array class library and implement
three cache-efficient optimizations. These transformations exploit both the spatial and
temporal locality of memory references exhibited by stencil statements. Experiments
have shown a performance improvement of 1.5 to 2.2 time beyond that of previous
transformations of array statements into lower level C code associated with the stencil
operations (which provided a 2 to 4 times improvement). While the C code transfor-
mations are relatively complex, the cache-based transformations are beyond the com-
plexity that is reasonable to expect programmers to write by hand. Thus we present
the case that the use of the semantics of high-level abstractions can be expected to lead
to faster code than what can likely be produced by hand.

Our results are encouraging and leave the possibility open for further refinement of
these transformations to achieve greater performance gains.

Transformations for
the Cache
Optimization of
Applications using
Object-Oriented
Abstractions
Sunjeev Sikand
UC San Diego

174 Student Internship Research Summaries

Summary

Within the human genome project, it is important to see the similarities
between genomes of different species. The most common approach to do
this is to perform a BLAST search of one genome against the other.

There are two main problems with this approach, both of which come from the fact
that the entire genomes are very large. The first problem is that the searches will take
weeks or even months. The second problem is that the computer may run out of
memory and crash. Our objective is to develop a system that will not have these
problems, but at the same time give us the same results.

Sam Rash and Paramvir Dehal came up with the main idea behind our approach. This
is to create a map of regions on one genome to regions on the other genome. In our
case we wanted to map regions on Fugu Rubripes to regions on the human genome.
To do this we decided to first map the IPI protein set to both Fugu rubries and human.
Since this a much smaller data set, the comparisons can be completed in a much small-
er time period. We were also able to make use of a program called BLAT, which per-
forms BLAST-like searches in less time. In our case we were able to complete these
maps over the course of a few days. Once both maps were complete we used the tran-
sitive property to finally map Fugu Rubripes to human. Now we can perform a BLAST
search using much smaller regions rather than entire genomes.

I implemented this method through a series of scripts, written in perl, that I call the
RVR (region vs. region) system. It contains eight main scripts along with four sub-
scripts that take the user through every step of the process. From the map creation
using IPI to the running and parsing of region BLAST searches. The RVR system takes
advantage of Sam Rash's job distribution program and is able to split the process into
thousands of jobs and send them to the JGI servers.

After using this system several times, I have determined that this process can be com-
pleted in around a week using the RVR system. The results of the region BLAST were
a mixed blessing. On one hand they had much less noise (bad hits that mean nothing
and take up space), but on the other hand there were some hits that the RVR system
had clearly missed. This can be expected, however, since regions that did not map to
an IPI would have not been included in the final BLAST. Since a large amount of time
and computing power is saved, the slightly sub par output is acceptable.

Now that the system is complete and tested, it will be used with future versions of
Fugu Rubripes and human. It may also be used to compare other genomes as well.
The RVR system will also continue to be debugged and tweaked if needed.

RVR, A Genome
Comparison System
Jonathan Strasser
UC Davis

175

Institute for Scientific Computing Research

Student Internship Research Summaries

Summary

The calculation of an isosurface on a single computer is a time-consuming task.
The time required to complete this task can be greatly reduced by splitting the
work up amongst multiple processors. The objective of this summer’s project

was to implement a multi-processor isosurface calculation program and test its efficien-
cy and scalability.

The program itself was written using many different languages that worked together to
create the final output. Interpreted Python, with the pyMPI and NumPy modules, was
used to set up the environments on each processor and to pass messages between
processors, a combination of compiled Python and C++ code was used to do the actual
isosurface calculation, and the Yorick visualization tool was used to view the isosurface.

To make the original isosurface calculation process work on multiple processors in par-
allel, each processor was given a small portion of the full problem space to work on.
Message passing, using the pyMPI module, was used to send necessary boundary cell
information to adjacent processors. The results from the calculation were then
dumped to multiple files (one for each processor), which could be read into and
viewed by Yorick at a later time. The resulting program ran in a time which is inverse-
ly proportional to the number of processors used in the calculation.

Future improvements include finding more efficient data structures in which to keep
intermediate information, finding a less-restrictive scheme for passing multiple mes-
sages at the same time, and finding a more structured file format in which to create
dump files.

Multi-Processor
Isosurface
Calculation
Mark Stuppy
University of Missouri-Rolla

176 Student Internship Research Summaries

Summary

The embedded boundary technique is a means of extending structured mesh dis-
cretizations, including adaptively refined structured meshes, to completely gen-
eral geometries, such as those encountered in computational fluid dynamics

(CFD). Motivated by the current development of micro- and nano-technology in aero-
space applications, we implement a Navier-Stokes solver for incompressible flow simu-
lation. Efficient computations of this type of flow are increasingly important aids in the
design of micro- and nano-scale vehicles.

We implemented the incompressible Navier-Stokes solver in an adaptive Cartesian
mesh setting. In order to handle the incompressibility constraint we used the projec-
tion method. The projection method is based on the Helmholtz-Hodge decomposition
theorem where the arbitrary velocity field with appropriate support and no-slip bound-
ary condition is decomposed into an incompressible velocity field and the gradient of
some scalar function. The scalar function is computed from the Poisson equation with
Neumann boundary condition and it well approximates the pressure field we seek. The
Poisson equation solver is the most intensive part in incompressible flow simulation.
Brian Gunney in the Center for Applied Scientific Computing (CASC) implemented
the Fast Adaptive Composite Grid (FAC) Method for the Poisson equation in
Structured Adaptive Mesh Refinement Application Infrastructure (SAMRAI) frame-
work. FAC achieves fast convergence of the iteration using the multigrid philosophy
on composite grids.

One of the drawbacks of the Cartesian mesh is its difficulty in handling the boundaries
that are not aligned on the meshes. Thus, it is important to develop the embedding
boundary technique to handle more complex geometry in structured meshes. We
employed the so-called “masking” technique to embed impermeable wall boundary
conditions. Based on a no-slip and no-flux boundary condition, we interpolate the
velocity and flux to satisfy the above two conditions. Although this is a rough approxi-
mation it works well thanks to the multi-level meshes provided by SAMRAI.

Future work will be dynamic adaptation, utilizing the SAMRAI adaptative capabilities.
Devising an a posteriori error estimator for goal-oriented adaptation is also an impor-
tant issue.

Embedded Boundary
Technique in
Structured Adaptive
Mesh Refinement
CFD
Ryuta Suzuki
University of Minnesota

177

Institute for Scientific Computing Research

Student Internship Research Summaries

Summary

The solution of a hyperbolic partial differential equation may be achieved by
casting the spatially semi-discretized equation as a high-dimensional ordinary
differential equation system through a method of lines strategy. Time integra-

tion may then be performed with various standard techniques. However, some meth-
ods prove unstable when discontinuities or high gradients in the field are present. This
can result in overshoot, oscillations, and general instabilities. One cure for such prob-
lems lies in a class of time integrators, namely the Runge-Kutta “Strong Stability
Preserving” (SSP) integrators. This type of integrator maintains the stability properties
provided by a forward first-order Euler explicit integration yet increases the time accu-
racy without instabilities.

The main objective was to implement a Runge-Kutta SSP time integrator in a spatially
adaptive framework, SAMRAI. This included validation and verification of the integra-
tor within the framework using both adaptivity and non-adaptivity to ensure correct
implementation. Upon successful completion of this task, a CFD code (ARCHES) was
to be implemented into the adaptive framework using the SSP time integrator with an
implicit pressure solve.

In order to simplify the solution procedure, time refinement was not used when imple-
menting the Runge-Kutta SSP integrator. The time step was calculated as the mini-
mum of all time steps over all levels and patches, which met with the Courant-
Friedrichs-Levy (CFL) condition. This simplifies the algorithm by negating the need
for flux-corrections at coarse-fine interfaces. This approach can be justified quantita-
tively through experience of those familiar with spatially adaptive algorithms. In gen-
eral, it has been found that the bulk of the calculation in an adaptive environment is
spent on the more refined levels, especially when a higher refinement ratio is used.
Therefore, little efficiency is lost in stepping the coarser levels at the small time steps.
No study was performed here to validate this conventional wisdom.

The algorithm was tested using Burger's equation with Riemann initial conditions and
the linear advection equation using several different initial conditions. The MUSCL
scheme was used to discretize the spatial elements of Burger's equation while a monot-
onicity-preserving scheme (MP5) was used for the linear advection problem. They
were both compared with an equal order, non-SSP time integrator. The solution was
also verified using the theoretical wave speed to mark the solution for refinement. In
other words, the cell tagging routine was in no way connected with the state of the
solution. It was found that the integrator performed well in both an adaptive and non-
adaptive environment. It was also found that the solution followed the theoretical
wave speed exactly, both with and without adaptivity. A write up on the subject of the
time integrator was produced and can be referenced for more detailed information.

An Implementation of
ARCHES into a
Spatially Adaptive
Framework for Pool
Fire Simulations
Jeremy Thornock
University of Utah

178 Student Internship Research Summaries

Summary (continued)

The next step involved implementing ARCHES into the SAMRAI framework using the
same time integration technique, again without time refinement. This is work in
progress. The Navier Stokes equations present a special challenge when dealing with a
multilevel calculation due to the link between the pressure and mass preservation. It is
proposed to use a canned FAC solver that is available in SAMRAI to tackle this issue.

Future plans include finishing the ARCHES/SAMRAI code and testing it with a simple,
laminar helium plume case. This should help validate a successful implementation of
the scalar transport equation, mixing model, pressure solver, and momentum update
using the Runge-Kutta time integrator. Turbulence models are to be added later.

Using a unique formulation which is evolving through the CSAFE project at the
University of Utah for handling multiphase flow, it is also proposed that research
into so called “cut-cell” methods are investigated using the ARCHES/SAMRAI formu-
lation. Current studies include using such a formulation to model reacting, multi-
phase mixing tanks.

Jeremy Thornock
University of Utah

179

Institute for Scientific Computing Research

Student Internship Research Summaries

Summary

We tested a Distributed Linda Tuplespace implementation called OpenLinda
with a small Monte Carlo simulation. OpenLinda proved to be a weak
implementation in that scaling to use multiple machines was very ineffi-

cient. We therefore wrote a new Distributed Linda-style Tuplespace implementation
with better scaling ability. We began with Postgres Database as the server, but later
adopted the the more efficient MySQL database.

The Linda tuplespace technique is a simple way to do distributed computing. Shared
data is stored in the tuplespace, and other computers connected to this distributed
tuplespace can access it. The three main functions by which Linda is defined are:

set() - insertion of a tuple into the tuple space

get() - destructive retrieval of a tuple from the tuplespace

read() - nondestructive retrieval of a tuple from the tuplespace

My Distributed Linda Tuplespace API also includes getall() and readall(), which allo-
cate and return large arrays of all matching tuples rather than just a single one.

Each function in the API can take any number of arguments up to 256. Types accepted
are int, long int, double, char*, and BLOB. The BLOB type is primarily used for stor-
ing other types of data than the standard types, such as user created structures. The
general format for each function is:

func(TSconn *conn, char *types, var, var, ...)

- where *conn is a pointer to a connection of type TSconn to the
Linda Tuplespace.

- *types is a string specifying the types of the following variables,
and

- var, var, ... is the list of variables to get or set.

The syntax for the specifying data types in the types string is simple. For each vari-
able, put a '%' followed by the first letter of the desired data type. For example, to
insert a tuple with types 'int, int, double, blob', the types string would be

Distributed Linda
Tuplespace
Aaron Wegner
Baylor University

180 Student Internship Research Summaries

Summary (continued)

“%i%i%d%b”. It is also acceptable to use the full data type, delimited with %'s. “%int
%int %double %blob” would work fine. For return values, precede the type with lower
case 'r'. “%i%ri%d%rb” will return and int and a blob for a tuple that matches the
given int and double.

A MySQL database must be installed to use this Linda implementation. The Linda
Tuplespace must have privileges to select, insert, update, delete, create, drop, and index.

The main limitation of the efficiency of this software is the database backend. Triggers
and stored procedures are not supported in the current version of MySQL (v4.0).
Once these are implemented, Linda could be modified to use them to run somewhat
faster. Additionally, it should be fairly easy to adapt this source code to take advantage
of a different, more efficient database than MySQL. One more possibility would be to
write a tuplespace server from scratch that does not have the overhead of a relational
database. In the future, I would like to work out some solution to get better perform-
ance out of the tuplespace server.

I would also like to add XML support to enable using the tuplespace across multiple
platforms simultaneously. Data would be encapsulated into a standardized format and
viewable from any machine. For functionality, it would be nice to be able to specify
exactly how many tuples to grab from the tuplespace instead of just being able to get
one tuple or all tuples. It also might be possible to take advantage of the high efficien-
cy of getall() to improve the speed of get().

This new implementation of a Linda Tuplespace is a success, both in and of itself, and
as a step along a development path. Since it handles an arbitrary number of connec-
tions and uses BLOB data, it is versatile. It scales well because the main limitation to
scaling is the database backend used. MySQL does a good job of handling many con-
nections, and a fairly good job with speed in relation to comparable databases. This
Linda Tuplespace software would be most useful on a system that does a large amount
of computation and has many connections to the tuplespace.

Aaron Wegner
Baylor University

181

Institute for Scientific Computing Research

Student Internship Research Summaries

Summary

To support ongoing research, the GNEM program maintains a large and grow-
ing database of seismic waveform and parametric data. Although we have large-
ly automated the process of loading data into the database, acquisition of the

data still requires nearly full-time attention of two people. Since much of the data are
available electronically, we intend to automate a large portion of the data acquisition.
As a first step, we have decided to automate the acquisition of earthquake bulletins. We
have decided that the system must be distributed among several computers. However,
we have not settled on an implementation language or on a technology for handling
distributed objects. This summer’s project was to build a prototype FTP agent that
could be used by the system to automatically acquire earthquake bulletins and forward
them to a processing queue. This served as an experiment to help us evaluate the
implementation difficulty and efficiency of available technologies.

Several programs were written to compare the capabilities and functions available in
C++ and Java for performing FTP connections. Then, we did some research into the
available technologies to determine the best way to acquire a distributed system. In
the end, Java was selected as the programming language to be used in order to take
advantage of the Java Remote Method Invocation (RMI), which enabled distributed
programming. The FTP package used is NetComponents. The resulting prototype is a
stand-alone system that runs an http server to receive RMI requests from clients. The
system retrieves the requested data from a remote location with FTP and returns the
result to the client. By using Java, the system becomes portable. And the RMI allows
data requests to be made over networks and does not require the client to reside on the
same machine with the FTP agent.

Based on the work accomplished, we have decided to implement the FTP agents and
their manager using Java and RMI. This will involve evolving the prototype to forward
error handling to the agent manager and to process additional messages that the final
system will require.

Building a Prototype
System for the
Automation of the
Acquisition of
Earthquake Bulletins
I-Hsuan (Sandy) Wu
UC Davis

U
n

iversity o
f C

alifo
rn

ia
Law

ren
ce Liverm

o
re N

atio
n

al Lab
o

rato
ry

Tech
n

ical In
fo

rm
atio

n
 D

ep
artm

en
t

Liverm
o

re, C
A

 94551

